Independent domination and matchings in graphs
نویسندگان
چکیده
منابع مشابه
Independent domination in directed graphs
In this paper we initialize the study of independent domination in directed graphs. We show that an independent dominating set of an orientation of a graph is also an independent dominating set of the underlying graph, but that the converse is not true in general. We then prove existence and uniqueness theorems for several classes of digraphs including orientations of complete graphs, paths, tr...
متن کاملCoverings, matchings and paired domination in fuzzy graphs using strong arcs
The concepts of covering and matching in fuzzy graphs using strong arcs are introduced and obtained the relationship between them analogous to Gallai’s results in graphs. The notion of paired domination in fuzzy graphs using strong arcs is also studied. The strong paired domination number γspr of complete fuzzy graph and complete bipartite fuzzy graph is determined and obtained bounds for the s...
متن کاملIndependent transversal domination in graphs
A set S ⊆ V of vertices in a graph G = (V,E) is called a dominating set if every vertex in V −S is adjacent to a vertex in S. A dominating set which intersects every maximum independent set in G is called an independent transversal dominating set. The minimum cardinality of an independent transversal dominating set is called the independent transversal domination number of G and is denoted by γ...
متن کاملIndependent Domination in Cubic Graphs
A set S of vertices in a graph G is an independent dominating set of G if S is an independent set and every vertex not in S is adjacent to a vertex in S. The independent domination number of G, denoted by i(G), is the minimum cardinality of an independent dominating set. In this paper, we show that if G �= C5 ✷K2 is a connected cubic graph of order n that does not have a subgraph isomorphic to ...
متن کاملMatchings in 3-domination-critical Graphs: a Survey
A subset of vertices D of a graph G is a dominating set for G if every vertex of G not in D is adjacent to one in D. The cardinality of any smallest dominating set in G is denoted by γ(G) and called the domination number of G. Graph G is said to be γ-edgecritical if γ(G + e) < γ(G) for each edge e / ∈ E(G) and is said to be γ-vertex-critical if γ(G − v) < γ(G), for every vertex v in G. In this ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Mathematics
سال: 2002
ISSN: 0012-365X
DOI: 10.1016/s0012-365x(02)00304-7